

SYNTHESIS AND PROPERTIES OF CELLULOSE-BASED HYDROGELS

Diana Ciolacu¹, Cyrielle Rudaz², Tatiana Budtova²

1 "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania
 2 Centre de Mise en Forme des Matériaux, Mines ParisTech, Sophia Antipolis, France

Hydrogels preparation and procaine incorporation

$$R = \frac{n \, mol \, ECH}{n \, mol \, AGU}.$$

· Relative concentration of ECH in the reaction medium

Sample	C cellulose, %	R	C procaine, g/L
5% R0-2	5	0	2
5% R0-4	5	0	4
5% R0-8	5	0	8
5% R1-4	5	1	4
5% R2-2	5	2	2
5% R2-4	5	2	4
5% R2-8	5	2	8
7% R0-4	7	0	5.2
7% R0.5-4	7	0.5	5.2
7% R1-4	7	1	5.2

The evaluation of drug release

cellulose concentrations (5% and 7%)

→ degrees of cross-linking (R0, R1, R2 or R0, R0.5, R1)

various procaine loading (2, 4, 8 or 5.2 g/L)

SWELLING MEASUREMENTS

Swelling of hydrogels in water, at 37°C

SWELLING MEASUREMENTS

No cross-linking

Low cross-linking ratio

High cross-linking ratio

→ <u>Competition</u> between physical and chemical gelation mechanisms

- a low amount of ECH ——— acts as a spacer decreasing chains' mobility and preventing the formation of hydrogen bonds.
- a higher amount of ECH ———— decreasing the amount of "new" pores which leads to the decrease of swelling.

X-RAY DIFFRACTION METHOD

Sample	CrI,%
R0	68
R1	59
R2	44

$$CrI(\%) = [S_C/(S_C + S_A)] \times 100$$

- Physical cross-linked hydrogels: cellulose II difractogram (R0)
- Chemical cross-linked hydrogels: more amorphous than R0 difractogram

POROUS MATRIX MORPHOLOGY (SEM)

SEM observations of physical (a) and chemical cross-linked (b) hydrogels

DRUG DELIVERY STUDIES

Release profiles of procaine in water, at 37 °C

• The amount of procaine released in a given period of time can be controlled by selecting the process conditions (cellulose concentrations and degrees of cross-linking) for hydrogels obtaining and the degree of procaine loaded.

CONCLUSIONS

- New types of cellulose-based hydrogels with various swelling degrees were obtained.
- Chemical cross-linking of hydrogel decreases ordered structure and increases the water absorption ability.
- The amount of the incorporated procaine increased as a function of swelling capacity of the hydrogel.
- The release kinetics of procaine can be controlled by selecting the process conditions (cellulose concentration and cross-linking degree).

