## Integration of a sulfite pulp mill and a viscose plant

### Hans Magnusson, Gunnar Henriksson, <u>Ulf Germgård</u>

Karlstad University, Karlstad, Sweden

### Hypothesis

- There are several benefits obtained if a dissolving pulp mill and a viscose fiber plant are built on the same site and "connected".
  - Lower chemical consumption (less waste)
  - Lower polluting emissions
  - Lower energy consumption
  - Lower production cost

# The project is divided into the following cases:

- Prehydrolysis kraft pulping and viscose
- Sodium sulfite pulping and viscose
- Magnesium sulfite pulping and viscose
- Multi stage sulfite pulping and viscose
- Dissolving pulping and other fiber processes

# Our project is divided into the following cases:

• Prehydrolysis kraft pulping and viscose

– Appita 69(2016)3, 264-272

- Sodium sulfite pulping and viscose
- Magnesium sulfite pulping and viscose
- Multi stage sulfite pulping and viscose
- Dissolving pulping and other fiber processes





• The cooking base is either sodium or magnesium



- The cooking base is sodium or magnesium
- Initial pH is 4,5 or 1,5. The rest of the cook is pH 1,5.



- The cooking base is sodium or magnesium
- Initial pH is 4,5 or 1,5. The rest of the cook is pH 1,5.
- Initial L/W ratio is high but reduced to 2,5/1 after puffing



- The cooking base is sodium or magnesium
- Initial pH is 4,5 or 1,5. The rest of the cook is pH 1,5.
- Initial L/W ratio is high but reduced to 2,5/1 after puffing
- Bleaching is done in acidic and alkaline stages

#### A viscose textile fiber plant



## Sulfur based compounds in the two integrated plants



## Sulfur "Mass balance"



## Integration alternatives

- Wet pulp vs dry pulp
- On site production of CS<sub>2</sub>
- On site production of H<sub>2</sub>SO<sub>4</sub>
- Reuse of Na<sub>2</sub>SO<sub>4</sub> from viscose plant as make-up in the pulp mill.
- Avoid SO<sub>2</sub> and H<sub>2</sub>S emissions and landfill of byproducts
- (1 t wood =1/3 t pulp =1/3 t viscose)
- (Swedish Rayon viscose plant)

## Steam saving in the pulp mill

• The dissolving pulp is only semi-dried after the pulp mill i.e. to about 40% dry solids.

• Steam saving (3 bar) about 3,3 GJ/ton of pulp

• (Based on GROT biofuel = 15€ /t)

# Chemical Recovery in Na based sulfite pulp mills

- Stora Kopparberg method
- SCA Billerud method
- General
  - Spent liquor Sulfur compounds are incinerated and reduced to Sulfide.
  - Oxidized to SO<sub>2</sub> or reduced to elemental S and then oxidized to SO<sub>2</sub>.
  - Dissolved in  $Na_2CO_3$  and add  $SO_2$ .

## Stora Kopparberg Sulfite recovey process

• Recovery boiler delivers:

- Na2CO3 + Na2S (recovery boiler similar to kraft)

- Na2S + CO2(g)  $\rightarrow$  H2S (g)
- -2 H2S (g) + O2  $\rightarrow$  2S + 2H2O
- $-S + O2 \rightarrow SO2 (g)$
- SO2 +Na2CO3 solution  $\rightarrow$  new cooking acid

### SCA Billerud Sulfite recovery process

- Recovery Boiler delivers:
  - Na2CO3 + Na2S (reducing conditions in boiler)
  - Cooler generates dust (Na2CO3 + C)
  - Na2S + CO2 (g)  $\rightarrow$  H2S (g) + Na2CO3
  - $-H2S + 3/2 O2 \rightarrow SO2 (g) + H2O$
  - SO2 dissolved in Na2CO3 solution → new cooking acid

### Claus process

 $2 H2S + O2 \rightarrow 2S + 2 H2O$  (over all reaction)

Step 1 Thermal step (> 850 °C) 2 H2S + O2  $\rightarrow$  2 SO2 + 2 H2O

Step 2 Catalytic step ( heat, cat reaction (Al (III) or Ti (IV), cooling)
2 H2S + SO2 → 3 S + 2 H2O

## Production of CS<sub>2</sub> (bp 46°C)

Modern, high efficiency process:



Older process using charcoal:

## H<sub>2</sub>SO<sub>4</sub> process

- $S + O_2 \rightarrow SO_2$
- SO2 + O2 (V2O5, 1-2 bar, 450 C) → SO3
- SO3 + H2SO4 → H2S2O7
- H2S2O7 + H2O  $\rightarrow$  2 H2SO4

- Over all reaction:
- $2 SO_2 + O_2 \rightarrow 2 SO_3$  (450 °C, cat  $V_2O_5$ )

# S-balance for an integrated dissolving pulp mill and a viscose plant (kg S/t)



# S-balance for an integrated dissolving pulp mill and a viscose plant (kg S/t)



# S-balance for an integrated dissolving pulp mill and a viscose plant (kg S/t)



#### Conclusions

- Wet pulp can replace dried pulp in the viscose plant which saves steam.
- Internal CS<sub>2</sub> can be prepared from CH<sub>4</sub> and elemental S at high temperature (600 °C)
- The viscose by-product Na<sub>2</sub>SO<sub>4</sub> can be reused as make up in the pulp mill.
- On site production of H<sub>2</sub>SO<sub>4</sub> and CS<sub>2</sub> is beneficial

### Basic idea.

#### Pulp Mill



## Steam saving in the pulp mill

 The dissolving pulp is only semi-dried after the pulp mill i.e. to about 40% dry solids. Is it possible? Overflow in viscose mill?

• Steam saving (3 bar) about 3,3 GJ/ton of pulp

• (Based on GROT biofuel = 15€ /t)

### Claus process

 $2 H2S + O2 \rightarrow 2S + 2 H2O$  (over all reaction)

Step 1a Thermal step (> 850 °C) 2 H2S + O2  $\rightarrow$  2 SO2 + 2 H2O

Step 1b 2 H2S + SO2 → 3 S + 2 H2O

Step 2 Catalytic step ( heat, cat reaction (Al (III) or Ti (IV), cooling)
2 H2S + SO2 → 3 S + 2 H2O

### Reuse of by-product Na<sub>2</sub>SO<sub>4</sub>

The Na<sub>2</sub>SO<sub>4</sub> by-product from the viscose plant can be concentrated by multi stage evaporation and then crystallization at low temp, centrifuged and finally semi or fully dried. This salt can be used as sulfur make-up in the sulfite pulp mill. Cf the Swedish Vargön sulfite pulp mill.

Consumed in Si-mill: 24% tot  $SO_2^* \implies 360 \text{ kg S/t pulp}$ 

Available in viscose plant  $\implies$  450-600 kg Na<sub>2</sub>SO<sub>4</sub> /t pulp or 145 – 200 kg S/t pulp.<sup>\*\*</sup>

\*No puffing is performed \*\*50% in spinn bath/50% with wet string

## The Stora Kopparberg chemical recovery process

In the recovery boiler spent cooking acid is converted to  $Na_2CO_3$  and  $Na_2S$ .

The sulfides are then converted to  $H_2S$  with the help of  $CO_2$ . The  $H_2S$  is then either reacting with  $SO_2$  to elemental S in a Claus process or oxidized with  $O_2$  to  $SO_2$ . Elemental sulfur is oxidized to  $SO_2$  with air and then dissolved in  $Na_2CO_3$ .

After addition of more SO<sub>2</sub> the cooking acid is ready for use.

#### The SCA Billerud chemical recovery process

 The recovery boiler is burning concentrated spent acid under reducing conditions to "dust" (Na<sub>2</sub>CO<sub>3</sub> and carbon) and H<sub>2</sub>S. The H<sub>2</sub>S is then incinerated with the undissolved dust and the generated SO<sub>2</sub> is dissolved in the Na<sub>2</sub>CO<sub>3</sub> solution. The cooking acid is ready for use. S mass balance II (kg S/ton pulp).

#### Into/ out of the viscose mill

- CS<sub>2 30% & 50% recycle 150 kg CS2/t</sub>
- H<sub>2</sub>SO<sub>4 750 kg/t</sub>
- Tot S <sub>125 + 250 = 375 kg S / t</sub>
- Na<sub>2</sub>SO<sub>4 550 kg/t pulp = 125 kg S/t</sub>
- CS2 to air 70 kg S/ t
- H2S to air 5 kg S/ t
- SO2 to air 5 kg S/ t
- S to landfill 30 kg S/ t
- To effluent treatment 140 kg S/ t
- Tot S <sub>125+70+4+4+30 + 140 = 375 kg S/t</sub>

#### Into the pulp mill

- (6% Tot SO2 & 4/1 & 35% yield)
- Tot S <sub>60 x 4 x 3 x 32/64 = 360 kg S/t pulp</sub>

## Carbon disulfide, CS<sub>2</sub>

- Boiling point : 46,3 °C
- Flash point: 43 °C
- Lower explosion limit , LEL : 0,6 vol%; 19 mg/l
- Upper explosion limit, UEL : 60 vol%; 1900 mg/l